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Abstract—The modelling process of Cyber-physical Systems
aggregates semantics and languages tailored to different specific
domains. The simulation of these complex systems involves
different tools and their coupling requires computational effort.
In the last few years both Academy and Industry worked toward
the definition of standard interfaces able to overcome such issues.
The Functional Mock-up Interface (FMI) standard emerged as
one of the most promising tool to easily export and integrate
heterogeneous models. However, the standard still shows some
weaknesses, particularly when dealing with Functional Mock-up
Units (FMUs) describing discrete-event systems.

This paper explore the features of the standard to find
its shortcomings when dealing with discrete models. Then, it
proposes a systematic approach to fully exploit the features of
the current standards to overcome such limitations. The solution
is based on two concepts: (1) exposing the internal time of
the FMUs, and (2) exploits the newly exposed information to
implement temporal decoupling. The combination of these two
concepts allows to optimize the FMUs coordination algorithms.
It reduces the number synchronization points and move the sim-
ulation from cycle-accurate to transaction-accurate. The impact
of these optimizations is measured on a set of benchmarks having
different tread-offs of computation and control.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are fundamental in many
revolutionary application that are now shaping todays world.
They are the technological ground for many different appli-
cations, such as smart manufacturing, smart city, autonomous
driving, etc. Improving design techniques for CPSs is crucial
to advance the state of the practice in many different system
engineering sub-disciplines [1].

System design requires models, and often models need to
be simulated in order to provide designers with the feedback
necessary to evaluate the quality of their ideas [2]. However,
the intrinsic heterogeneity of CPSs makes modeling and sim-
ulation a very difficult task [3]. Technologically, holistic simu-
lation of heterogeneous system requires to use either complex
co-simulation environment aggregating specialized simulators
for the many design domains involved in the system, or to
produce a single holistic model of the system [4]. However,
the latter solution requires to access, often unavailable, open
specifications for every component of the system. On the
other hand, co-simulation requires to interface many different
simulation tools, often providing incompatible interfaces.

In this scenario, the FMI standard for co-simulation emerged
as one of the most promising technologies to interface hetero-
geneous simulators and models [5]. It defines an Application
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Figure 1: Overview of the contribution.

Programming Interface (API) that must be implemented by the
simulator. As such, FMI can be easily used to build Cyber-
Physical Virtual Platforms [6] able to emulate the behaviors
of both the “cyber” and “physical” parts of a CPS.

Even though the FMI standard proved to be a powerful
tool to build such Cyber-Physical Virtual Platform, its focus is
still strongly oriented to the simulation of continuous dynamic
systems [7]. Thus, simulation of digital components requires
to adapt the use of its construct to replicate the semantics of
HW components simulators [6]. Some previous work has been
done so far to improve the support of Hardware Description
Language (HDL) models in FMI [6], [8]. However, the ad-
vantages in terms of simulation speed of higher-level models,
such as Transaction-level models [9], have not been exploited
so far due to some limitations of the standard. This paper aim
at analying and discussing such limitations. Then, it proposes
a set of adjustments in the use of FMI constructs defined
in the current standard for co-simulation (i.e., version 2.0).
Furthermore, it proposes a simulation coordination scheme that
exploits such adjustments. These contributions together allows
to produce and use Transaction-level Functional FMUs, thus
speeding up simulation of Cyber-Physical Virtual Platforms.

In the last few months, the FMI Steering Committee an-
nounced a new interface (version 2.1) that aims to introduce
the hybrid co-simulation concept [10], but actually is still in
pre-alpha version and not yet fully accepted. Furthermore, it
will take time to be accepted from all the tools that support
the standard. Using the current version 2.0 guarantee the retro-
compatibility with the actual version of the tools.

Figure 1 summarizes the contributions of this work. On
the left, the CPS to be designed is simulated by using a



Cycle-accurate Cyber-Physical Virtual Platform. The virtual
platform is composed by using the FMI standard, and it
is composed by both the models of the “cyber” and the
“physical” sub-systems of the model. In this work we focus
on the “cyber” part of the system. Here ,it is modeled by
aggregating different FMUs representing the different digital
components of the system. The simulation is managed by a
classic Master Algorithm coordinating the FMUs. The time
evolution of the virtual platform on the left-side of the figure
is accurate with respect to the clock cycle of the system.
Thus, each simulation step simulates a single clock cycle,
and synchronization must be performed after each step. This
work improves the left side configuration by proposing two
modifications to the platform and its components:
• The functionality within the FMUs composing the digital

part of the system are abstracted to transaction-level.
Their interfaces are modified to make them communicate
their internal local time backward to the master algorithm.

• The master algorithm is improved to exploit the infor-
mation about the local time of the FMUs in the model.

These modifications allow to produce the Transaction-level
accurate Cyber-Physical Virtual Platform on the right-side
of the figure. The platform synchronizes at each transaction
defined by the communication protocol. Thus, it benefits the
lighter synchronization for improving the simulation speed.

The paper is organized as follows: Section II gives the
necessary background about FMI, and summarize the state of
the art. Section III discuss the advantages and the limitations
in the current version of the FMI standard and discuss a set
of possible improvements. Section IV presents the method-
ology proposed by this paper. The presented approach is
implemented by building an automatic tool-chain and then
experimentally evaluated in Section V. Finally, in Section VI
we draw some conclusions.

II. BACKGROUND AND RELATED WORK

FMI is a tool-independent standard that aims at enhancing
the interoperability between tools of different vendors in the
field of systems design [5], [11]. It supports both model
exchange and co-simulation of dynamic models produced
by using different tools and languages. The standard has
been originally developed by Daimler AG, and maintained by
the MODELISAR Consortium. After the termination of the
MODELISAR European Project, the standard is maintained
by the Modelica association. The last version of the standard
is the 2.0, accepted in 2014, while the version 2.1 is currently
under review. The basic blocks of a FMI-based simulation
environment are called FMUs. Multiple FMUs can be im-
ported within a simulation tool to be executed. Each FMU
may implement only one of the two variations of the standard:
Model Exchange or Co-Simulation. A model exchange FMU
describes functionalities by using differential, algebraic and
discrete equations with time-, state- and step-events [11]. The
equations must be solved by an external solver, that is thus
required to simulate model exchange FMUs. A co-simulation
FMU must model the functionality and implement the solver.
As such, the described model can be simulated without using
any external solver.
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Figure 2: Statechart representation of the coordinator algo-
rithm for a FMU.

In our opinion, the standard for model exchange does not
suit well for describing discrete-event models. Thus, in this
work we focus on co-simulation, and we hereby describe the
main features and structure of a FMU for co-simulation.

A. FMI Standard 2.0 for co-simulation
An FMU is composed by an XML file and the implemen-

tation of the functionality as a dynamic library written in C.
Any FMU for co-simulation must implement also the solver
necessary to execute the functionality. The XML file must
specify all the variables of the FMU visible to the simulation
environment [5]. Each variable has a name, causality (e.g.,
input, output, parameter, etc.), a type and a value reference.
The value reference of a variable must be unique among the
variables of each type, since each variable will be uniquely
identified by the pair made of its type and value reference.

The dynamic library must implement the functionality
through a set of functions defined by the standard. The most
important, among the many defined in the standard, are:
• fmi2SetupExperiment: initializes the internal vari-

ables of the FMU.
• fmi2Set: sets the value of an internal variable of the

FMU i.e., it assigns a value to an input.
• fmi2Get: gets the value of an internal variable of the

FMU i.e., it returns the value of an output.
• fmi2DoStep: advances the simulation time of the com-

ponent executing the behavior defined by the model.
The standard defines the signature of all the functions to

implement, but it imposes how they should be used, as it rather
defines only some limitations on the possible combinations.

B. Simulation coordination in the FMI standard
Any model having one or more FMUs requires a coordina-

tion mechanism compliant with the FMI standard. Version 2.0
of the standard [5], [11] defines the concept of master algo-
rithm as the actor in charge of exchanging data between FMUs
and synchronizing the simulation of the involved solvers.
The former task is implemented by the master algorithm by
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invoking the fmi2Get and fmi2Set functions of the co-
simulation API. The latter task is implemented by carrying
on the components execution by invoking the fmi2DoStep
functions of the FMUs composing the model being simulated.
While the standard defines some rules about the master
algorithm, the exact definition of the algorithm is not part
of the standard. The rules defined are mostly imposing some
limitations on the structure.

Figure 2 reports a statechart simplified version of the master
algorithm. It shows the functions that the algorithm must
invoke for each FMU in the model according to standard 2.0.
The figure reports only the execution of a initialized FMU, that
is a system that already successfully went through the FMU
setup state. Once the fmi2SetupExperiment function re-
turned successfully, the execution reaches the Step Completed
atomic state within the State Initialized sub-machine. The
master algorithm may invoke the fmi2Get or the fmi2Set
functions to respectively read or write values of the FMU
external variables. Otherwise, the algorithm may invoke the
fmi2DoStep function: the algorithm must call the function
by passing as a parameter the amount of time that must be
simulated. If so, the machine moves to the Step in Progress
state. The FMU simulates by executing its functionality: if the
step is not canceled or discarded, and no errors are catched
during the FMU execution, the fmi2DoStep returns and
the machine goes back to the Step Completed state, and
the FMU advances its own local time according to the one
previously passed as a parameter. These steps iterate until
no fmi2Terminate function is invoked. A simulation tool
may implement a coordinator for FMI by simply iterating
this process for each FMU, or by implementing some more
complex mechanism. Still, it must adhere to the state-chart in
Figure 2. Finally, the standard explicitly states that is not legal
to call a fmi2Get function after fmi2Set functions without
calling the fmi2DoStep function in between.

Listing 1 shows a C implementation of a trivial master
algorithm using the functions defined by the FMI standard
for co-simulation. The procedure loads the FMUs instantiating
two variable of type fmi2Component that will points to
the FMU implementations (Lines 3–6). The status variable
is declared (Line 8): every function defined in the standard
returns a status. The master algorithm initializes the FMUs,
the timing variables and defines four integer variables (Lines
10–15). Then, a thousand simulation cycles are executed: the
algorithm reads the output from the FMUs and assigns it to the
input variables (Lines 18–20). Then, it sets the input variables
of the FMUs (Lines 21–22). Finally, the algorithm executes
the functionalities, advancing the global time of the FMUs
and update the global time (Lines 23–25).

C. Related Work

The weaknesses of the FMI standard have been first iden-
tified in [12].They are related to managing hybrid systems,
having both discrete and continuous dynamics. The analysis
highlights that FMI is more suited for physical, continuous-
time (or discretized) systems, rather than discrete-event sys-
tems. Thus, it is tricky to use FMI when models require
discrete events.

Listing 1: Sketch of the C implementation of a basic master
algorithm compliant with the FMI standard. The algorithm
executes a thousands iterations, each of those advances the
local and global time of 10 time units.
1 ...
2 int main(int ac, char * av[]){
3 fmi2Component component_1 =
4 load_fmu("./component_1.fmu");
5 fmi2Component component_2 =
6 load_fmu("./component_2.fmu");
7 ...
8 fmi2Status st;
9 ...

10 st = fmi2SetupExperiment(component_1);
11 st = fmi2SetupExperiment(component_2);
12 ...
13 time = 0; step = 10;
14 ...
15 fmi2Integer in_1, in_2, out_1, out_2;
16 // Simulation starts here.
17 for(int i = 0; i < 1000; ++i) {
18 st = fmi2GetInteger(component_1, 0, &out_1);
19 st = fmi2GetInteger(component_2, 0, &out_2);
20 in_1 = out_2; in_2 = out_1;
21 st = fmi2SetInteger(component_1, 1, in_1);
22 st = fmi2SetInteger(component_2, 1, in_2);
23 st = fmi2DoStep(component_1, time, step);
24 st = fmi2DoStep(component_2, time, step);
25 time = time + step;
26 }
27 }
28 ...

Some work has been done to close the semantic gap between
continuous-time models, and discrete-event (or even clock ac-
curate) models in FMI. The solution proposed in [7] relies on
tokens synchronizing the FMUs in the model when discrete-
events happen. However, such a mechanism may introduce
many synchronization points in the execution thus slowing
down the simulation. The work in [6] showed how the token-
based simulation does not suit well to simulate models coming
from HDL descriptions. Then, it proposed an ad-hoc synchro-
nization methodology to reproduce the cycle-accurate behavior
of HDL descriptions. It manages the synchronization locally
to each FMU, while the data are exchanged by an additional
FMU acting as a communication hub for the data in the
system. It relies on automatic code generation to generate the
FMUs implementing such mechanism. Automatic code gener-
ation of FMUs for co-simulation from HDL descriptions has
been presented in [8]: it relies on a state-of-the-art abstraction
technique [13] to translate HDL models into C descriptions.
Then, the C implementation of the functionality is wrapped
by an interface using the FMI API for co-simulation.

While none of the approaches described above is proposing
modifications to the standard, a number of papers do it. [10]
proposes an additional mechanism to add to the FMI standard,
aside to the model exchange and the co-simulation mecha-
nisms. This is called Hybrid Co-simulation, and it is specif-
ically tailored to manage mixed continuous/discrete models,
having discrete-events impacting on continuous dynamics. [14]
proposes some modifications to the API specified by the FMI
standard for co-simulation. In particular, it proposes to add
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some variants of the fmi2DoStep function able to manage
discrete-event and to interrupt (and preempt) the execution of
an FMU when events must be managed.

To the best of our knowledge, none of the previous work
proposed transaction-level FMU. This is due to the fact that
the master algorithm must always know in advance the next
step size for each FMU [12], [15]. Our solution overcomes
this limitation, allowing to produce more abstract FMUs.

III. FMI STANDARD ADVANTAGES AND LIMITATIONS

As a first contribution of this paper, we discuss the stan-
dard’s features useful to create cyber-physical virtual platform.
Then we will discuss some limitations that make integration
of virtual platforms difficult. Our discussion will be from
a “cyber” point of view, as we aim at highlighting the
weaknesses of the standard when dealing with discrete-event
and cycle-accurate components.

Indeed the standard allows to ease the integration of dif-
ferent tools. It simplifies the interfacing of heterogeneous
description. It allows the designer to care only marginally
about communication and synchronization between simulators.
Furthermore, it is reasonable to assume that complex CPSs are
designed by multiple teams of designers. For instance, a team
might be in charge of the physical part while the other designs
the computational infrastructure. The FMI standard allows to
easily integrate the models produced by different teams, to
build a holistic simulation of the system.

However, as hinted in Section II-C, the standard has been
strongly oriented to continuous systems and dynamics. We can
identify different drawbacks when modeling discrete compo-
nents, and in particular when simulating digital components.

The set of data types provided by the standard is limited.
When modeling digital HW it happens to use multi-valued
logic values, or signals that uses an arbitrary number of bits.
Meanwhile, FMI allows only integer, real, string and boolean.
Thus, HDL data-types must be mapped on the provided
types. Different mappings have been already proposed in the
past. Multi-valued logics as well as arbitrary long bit vectors
have been mapped onto strings [16], and (more efficiently)
abstracted to unsigned integer [8]. Still, none of the previous
mapping is ideal even though they partially solve the problem.

The data-types provided by FMI are even more insufficient
when modeling digital HW models at higher levels of abstrac-
tion, or when modeling SW. In such case, models may require
aggregate data types, e.g., to represent sockets’ payloads in
transaction-level description, or classes of SW models. In this
case, FMI does not provide any other solution than breaking
down any aggregated type into its basic components.

The standard does not provide any mechanism to specify the
Model of Computation employed by the FMU to implement
the functionality. In the case of a digital HW description
assignments are concurrent. However, simulators usually rely
on sequential models of computation (e.g., data-flows). When
aggregating digital HW components using FMI, complex syn-
chronization structures must be built [6], [7] to guarantee the
functional equivalence of the aggregated model of the system.

It is not possible to retrieve the internal time of an FMU.
The master algorithm “imposes” to each FMU its internal tim-
ing. The main issue is related to the fmi2DoStep function
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Figure 3: Overview of the proposed approach, and comparison
with the state-of-the-art methodology presented in [8].

behavior: it is called by the master algorithm and it carries
on the simulation time while executing an FMU functionality.
The execution of an FMU cannot be preempted by external
events. Neither the FMU is allowed to simulate an amount of
time different with respect to the one imposed by the master
algorithm, since the FMU cannot communicate back to the
master algorithm its effective internal timing. For this reason,
the master algorithm must alway be able to know exactly
the length of the next time step of each FMU. This forces
the master algorithm to call the fmi2DoStep function of
an FMI using the shortest time step available, or to perform
multiple step revisions. Thus, this limitation leads to an
higher number of synchronization points in the simulation and
makes impossible to use advanced synchronization techniques,
such as temporal decoupling. Thus, it is not well suited to
manage discrete events that might be generated by system’s
components. In the case of HW description, this usually forces
to simulate each FMU with a time granularity equal to the
clock cycle [6].

A. Novelty
To summarize, the paper aims at improving the previously

published solutions found in the literature in two directions:
• While previous solutions propose modifications to the

standard, this paper proposes a solution that modifies the
characteristics of FMUs while still being compliant with
the current version of the Standard (i.e., version 2.0).

• Previous solutions rely on a very thin grained synchroniza-
tion mechanism. This solution is able to produce modules
requiring coarser synchronization. That is, in the case of
a HW Intellectual Property (IP) component, the FMU im-
plementing its functionality can perform synchronization
at each transaction of its communication protocol. In other
words, this paper aims at moving the simulation granularity
from RTL to TLM.

Finally, an automatic tool-chain has been built to evaluate
our methodology on a set of HDL IPs.

IV. METHODOLOGY

Figure 3 gives an overview of the proposed methodology.
It starts from a set of HDL IPs models described by using
either VHDL or Verilog. While in the previous approach [8]
(i.e., red box in Figure 3) such models were simply trans-
lated into C models then wrapped into FMUs, in this paper
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Listing 2: modelDescription.xml file of the
component_1 with time port.

1 ...
2 <ModelVariables>
3
4 <!-- Input Ports -->
5 <ScalarVariable name="in_1"
6 causality="input"
7 valueReference="0">
8 <Boolean start="false"/>
9 </ScalarVariable>

10
11 <ScalarVariable name="in_2"
12 causality="input"
13 valueReference="1">
14 <Boolean start="false"/>
15 </ScalarVariable>
16
17 <!-- Output Ports -->
18 <ScalarVariable name="fmi2TLifaceTime"
19 causality="output"
20 valueReference="-1">
21 <Integer start="0"/>
22 </ScalarVariable>
23
24 <ScalarVariable name="out_1"
25 causality="output"
26 valueReference="0">
27 <Integer start="0"/>
28 </ScalarVariable>
29
30 <ScalarVariable name="out_2"
31 causality="output"
32 vr="1">
33 <Integer start="0"/>
34 </ScalarVariable>
35
36 </ModelVariables>
37 ...

HDL IPs undergoes an abstraction and manipulation process
(colored arrows in Figure 3). The produced models rely on
a transaction-level synchronization mechanism. Finally, these
FMUs are inserted within the Cyber-Physical Virtual Platform.
They will be coordinated by a master algorithm that is aware of
the shifting in synchronization and communication granularity
achieved by applying the transformations.

A. FMUs generation and timing backward propagation

The most constraining issue identified in Section III is the
impossibility for the FMUs to propagate their local time back
to the coordinator. In our analysis, it is the main problem to
to tackle for achieving an efficient discrete-event simulation.
In fact it allows the master algorithm to decide efficiently the
length of the next simulation step.

This problem can be solved by allowing each FMU to
simulate in a decoupled way, without defining the simulation
step size. When the Master Algorithm calls the fmi2DoStep,
the FMU simulates until it does not need to synchronize or
communicate with other components in the system.

The proposed methodology starts by generating
Transaction-Level models starting from HW descriptions.
We apply the methodology defined in [17] that starts from
HW models described at Register Transfer Level (RTL)
and abstract them to Transactional Level Modeling (TLM):
it takes in input an HDL model and its communication
protocol. The HW descriptions can be provided by using
the most common HDLs (i.e., VHDL or Verilog). The

protocol of a component can be specified in different
ways. The state-of-the-art implementations of the RTL-to-
TLM abstraction methodology relies on ad-hoc protocol
specification languages [13]. The abstraction result is a C++
class representing a Transaction-Level model. Each transaction
of the system is executed by invoking its simulate function,
and it emulates one transaction of the specified protocol. The
internal time of the model is annotated as Integer datatype,
which represents the number of clock-cycles executed in
the last transaction. The abstraction procedure computes the
number of clock cycles for each transaction, and annotate it
within the generated model.

The interface of the model is isolated in a structure embed-
ded inside the C++ class. The structure contains a set of fields
representing the original ports of the HW models. The data-
types of these fields are abstracted into C native data-types. For
instance, a 32-bit logic_vector datatype is abstracted into
uint32_t C datatype. The methodology relies on automatic
abstraction of HDL data-type [13] to perform this transfor-
mation. Furthermore, the interface structure also contains the
time annotation of the model.

Then, the methodology goes on by wrapping the C++
class within the FMI functions. Thus, it generates the set
of fmi2Set and fmi2Get necessary to write and read,
respectively, input and output variables from and to the com-
ponents. It also generates the fmi2DoStep function that calls
the generated simulate function emulating a component
transaction. The fmi2DoStep function still accepts the step
length, in order to stay compliant with the standard. However,
it ignores it as the actual internal time of the FMU at the
end of the execution is computed by the simulate function.
Then, the methodology continues by generating the XML
file of the FMU. The original ports of the HW model are
mapped in the FMI data-types. In particular, the Boolean
and Integer FMI types are used to represent respectively
single bit (or logic) and bit (or logic) vectors. Then, the value
reference, is assigned to each port. The assignment of the value
reference starts from 0 for each data-type. Listing 2 depicts
the definitions of the ports in the XML file for a component
originally having two input and two output ports.

Then, the methodology enriches the interface of the FMU
with the internal time annotation of the Transaction-Level
Model. The internal time of the Transaction-level model is
exposed as a new Integer port of the FMUs (see Listing 2,
line 18-22).The value reference -1 is reserved for the timing
port, since ports are uniquely identified by their type and
value reference pairs. This assures that it can be uniquely
identified once the FMU is loaded by a simulator. Furthermore,
the timing port is called fmi2TLifaceTime in order to
decrease the chances of name clashing with the other ports
of the FMU. This last solution is helpful to increase also the
readability of the produced FMUs.

B. A better coordinator for discrete systems
Listing 1 describes an example of a trivial Master Algo-

rithm. It is able to executes cycle-accurate FMUs and it must
synchronize the components composing the system at each
clock cycle. For this reason, in the trivial master algorithm
the time step of each fmi2doStep is set to be equal to the
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clock period of the system being modeled. Such a solution is
indeed precise; however, it uses an unnecessarily high number
of synchronization points. The backward propagation of the
FMUs internal time can now be exploited to to reduce the
number of synchronization points.

Figure 4 shows the execution scheme of the Smart Master
Algorithm. Its core is the FMU Coordinator: it is in charge of
storing the internal time values of the FMUs in the system, and
it decides at each simulation step which components must be
executed. Initially, the Smart Master Algorithm simulates all
the FMUs, without defining a step size. All the FMUs return
to the coordinator their internal time after their first execution.
Then, the Smart Master Algorithm iterates the following steps
(as in Figure 4).
• 1© Time-Data Storing: the internal time and the new data

of each FMUs are retrieved from the master algorithm and
passed to the FMU Coordinator that stores them.

• 2© Global Time Elaboration: the FMU Coordinator elab-
orates the new Global Time of the simulation as the
minimum value among all the internal times of the FMUs.

• 3© Synchronization: any FMU having the internal time
equal to the Global Time is inserted into the list of
runnable FMUs. Data read after the last execution of each
runnable FMU, and previously stored by the coordinator,
are shared with the system (i.e., the values become valid
for the entire system).

• 4© Data Propagation: the Smart Master Algorithm propa-
gates the data and simulates the FMUs present in the list
of runnable FMUs.

Listing 3 shows a sketch of the novel Smart Master Algo-
rithm proposed. It reports only the most important parts of a
possible C++ implementation of the coordination mechanism.
Initially (Lines 2–9) there is the declaration of a status variable,
an integer variable tracking the global time, and an array
of components. The FMUs composing the system are stored
in the array after being loaded. It is also declared an array
to store the local times of the FMUs. Notice that the same
position in the two arrays refers always to the same FMU.
Then, the coordinator initializes the simulation (Lines 11–16)
by executing all the components once without advancing the

Listing 3: Sketch of the C++ implementation of the Smart
Master Algorithm exploiting backward timing propagation.
1 ...
2 fmi2Status st;
3 unsigned int global_time=0;
4
5 fmi2Component components[num];
6 components[0]=load_fmu("./component_1.fmu");
7 components[1]=load_fmu("./component_2.fmu");
8
9 unsigned int local_time_vector[num];

10
11 for(int i=0; i < num; i++) {
12 st=fmi2DoStep(components[i], global_time, 0);
13 st=fmi2GetInteger(component[i], -1, &local_time);
14 local_time_vector[i]=local_time;
15 retrieve_and_store_output(component[i]);
16 }
17
18 while(global_time < 1000) {
19 set< fmi2Component > runnable_FMUs;
20 global_time=find_minimum(local_time_vector[0]);
21
22 for(int i=0; i < num; i++) {
23 if(local_time_vector[i] == global_time)
24 runnable_FMUs.insert(components[i]);
25 }
26
27 propagate_data(runnable_FMUs);
28 set< fmi2Component >::iterator it;
29 for(it=runnable_FMUs.begin;
30 it != runnable_FMUs.end; it++)
31 {
32 fmi2Component * component=*it;
33 st=writeInputs(component);
34 st=fmi2DoStep(component, global_time, 0);
35 st=fmi2GetInteger(component[i], -1, &local_time);
36 local_time_vector[i]=local_time;
37 retrieve_and_store_output(component[i]);
38 }
39 }
40 ...

global time. For each execution, the local time is retrieved
(Lines 13) and stored (Line 14). Then, all the output values
written by the FMU are retrieved and stored (Line 15). Then,
the system is simulated (Lines 18–39). At each simulation
cycle a set containing the runnable FMUs is created empty, and
populated after the the global time has been update (Lines 19–
25). Then, data previously produced by the runnable FMUs are
propagated (Line 27). Finally, each runnable FMU is executed
(Lines 28–37).

V. METHODOLOGY APPLICATION

The methodology has been implemented by assembling
a tool-chain able to perform the different abstraction, ma-
nipulation and translation steps defined. We used the API
provided by the HIFSuite framework [18] to extended the
tool-chain presented in [8]. The automatic abstraction of
HDL descriptions is performed by specifying the components’
protocols to generate the corresponding transaction-level C++
descriptions as defined in [17]. The models produced by the
abstraction are enriched with the timing backward propagation
mechanism. Finally, a tool wraps the model within the FMI
APIs for co-simulation. We applied the tool-chain to a set
of benchmarks characterized by two different dimensions: the
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Figure 5: FSM implemented in the HW model with generic
latency.

Table I: Execution time of FMUs simulation using trivial
Master Algorithm, with different number of iterations.

# iterations
(clock cycles)

Execution of FMUs (seconds)

2 5 10 20 40

100 K 4.76 10.75 21.89 43.34 82.46

1 M 41.87 104.13 198.74 405.25 834.34

10 M 421.93 1021.64 2015.55 4129.17 8322.22

20 M 886.78 2062.32 4267.29 8219.65 16466.54

protocol latency and the number of FMUs. In this way, we aim
at estimating the scalability of the proposed approach with
respect to these two dimensions. We implemented the same
functionality within each HW component of the system, since
the paper focuses on the interfaces of the components, rather
than on their internal functionalities. The internal functionality
is kept extremely simple: as such, the communication and
synchronization overhead is predominant in the simulation.
Each component implements a simple counter, that counts
until its pre-defined latency is reached. Figure 5 shows the
Finite State Machine (FSM) implemented within the HW
models used in our experimental setup. Whenever a HW
model reaches the Execution state it remains in the state for
a certain amount of clock cycles. The number of clock cycles
represents the latency of the model. For each experiment, we
have considered components with different latencies. In the
experiments we refer to the base latency of an experiment as
the minimum latency of the component in that experiment.

We generate two FMUs of different types for the same
HW model: the cycle-accurate FMU and the transaction-level
FMU with backward timing propagation. All the experiments
have been performed on a 64-bit machine running Ubuntu
Linux 16.04, equipped with 16 GB of memory and an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz.

Table I reports the execution time by using the Trivial
Master Algorithm, with different cycle-accurate FMUs and
different numbers of iterations. The protocol latency dimen-
sion is not considered in this Table because the Trivial Master
Algorithm simulates only cycle-accurate FMUs. Using the
Trivial Master Algorithm the protocol latency does not affect
the coordination overhead in the simulation. The results show
that moving in both the dimensions (number of FMUs or
iterations) the execution time increases almost linearly.
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Figure 6: Trend of the simulation overhead using the Smart
Master Algorithm with respect to the protocol latency.
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Figure 7: Scalability of the Smart Master Algorithm with
respect to the number of FMUs.

Table II compares the simulation speed achievable by using
the Trivial Master Algorithm and the Smart Master Algorithm.
The results regarding the experiments with the Smart Master
Algorithm depend on the protocol latency. The Trivial Master
Algorithm results are not depending on this dimension. The
comparison shows how the simulation time required when
using the Smart Master Algorithm is in relationship with the
protocol latency of the FMUs. The Smart Master algorithm
with the transaction-level FMUs achieves up to 11x speed-up
when using the largest protocol latencies considered. Reducing
the protocol latencies of the transaction-level FMUs, the Smart
Master Algorithm reduces the simulation performace, because
of the increasing number of synchronization points. Of course,
when the protocol latency is equal to one clock cycle (e.g.,
when modeling combinatorial circuits) we have a degenerate
case: the transaction-level and the cycle-accurate implemen-
tations will have the same amount of synchronization points.
As such, only in that case, the Smarter Master Algorithm is
slightly outperformed by the trivial one, due to the higher
amount of computation required by the coordinator.

Figures 6 and 7 give a graphical representation of how the
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Table II: Execution Time Comparison of Normal Master Algorithm and Smart Master Algorithm with different protocol
latencies. In all the scenarios, 10 million clock cycles of the system have been simulated.

Base Latency
(clock cycles)

Execution of FMUs (seconds)

2 5 10 20 40

Trivial Smart Speed-up Trivial Smart Speed-up Trivial Smart Speed-up Trivial Smart Speed-up Trivial Smart Speed-up

20 421.93 115.54 3.65x 1021.64 250.23 4.08x 2015.55 465.48 4.33x 4129.17 889.39 4.64x 8322.22 1752.71 4.75x

50 421.93 60.28 7x 1021.64 135.65 7.53x 2015.55 253.43 7.95x 4129.17 481.36 8.58x 8322.22 964.92 8.62x

100 421.93 44.71 9.44x 1021.64 95.57 10.69x 2015.55 179.34 11.24x 4129.17 344.25 11.99x 8322.22 702.17 11.85x

simulation overhead changes when changing the protocol base
latencies and the number of FMUs respectively. The vertical
axes of both table reports the simulation time, while the hori-
zontal axes reports the two considered dimensions. The trends
in Figure 6 show how performance improve by incrementing
the latency. This is due to the fact that a longer latency allows
for more temporal decoupling, thus less synchronization and
communication overhead. Figure 7 shows that the simulation
time increases linearly with the number of involved FMUs.
Thus, it shows the minimal impact of the more sophisticated
master algorithm proposed in this paper.

VI. CONCLUDING REMARKS

In this work we showed a way to exploit the current version
of the FMI standard to simulate FMUs representing digital
components at transaction-level. We added some information
to the FMUs and we adopted an ad-hoc master algorithm but
still conform to the standard.

The experimental results showed that the proposed solution
is beneficial for the simulation. However, our approach suffers
the effort necessary to explicitly force the standard to accept
the transaction-level FMUs we defined. After this work, we
are convinced that improvements of the standard will ease
simulation of discrete-event models.

Most importantly, this work highlights the benefits provided
by the possibility to propagate timing information in the
backward path going from FMUs to the master algorithm.
Such a feature allows to label each output value got from
an FMU with the internal time of the FMU. The time in the
label will indicate the moment in the simulated time when
the variable obtain that particular value. Of course, multiple
values may exist for a single output variables. However, each
of these values will have a different label indicating different
simulation time-step since FMUs can only move forward in
time. Furthermore, at each invocation of the fmi2DoStep
function an FMU advances of at least an amount of time equal
to the time granularity of the simulation that is strictly greater
than zero. As a consequence, for each variable there will be
only one value for each simulation step. Thus, the solution
preserves determinism.

Such a solution recalls the discrete-event semantics typical
of digital system. Thus, it will allow to implement a simulation
mechanism more similar to the one used to simulate HDL
models, as shown in the paper. Consequently, it might dras-
tically improve the capabilities of the standard of simulating
digital devices along with continuous-time models. Thus, it
will drastically ease the integration of efficient Cyber-Physical
Virtual Platforms.
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